Remote Sensing and GIS - Publications and Journal Articles
 

Publications

Journal Articles

2024 Back to Top
1.

Dryland cropping in different Land uses of Senegal using Sentinel-2 and hybrid ML method. International Journal of Digital Earth
Gumma, M. K. Pranay Panjala, Pardhasaradhi Teluguntla
View...

2.

Spatial Distribution of Cropping Systems in South Asia Using Time-Series Satellite Data Enriched with Ground Data
Murali Krishna Gumma Pranay Panjala, Sunil K. Dubey, Deepak K. Ray, C. S. Murthy, Dakshina Murthy Kadiyala, Ismail Mohammed, Yamano Takashi
View...

3.

Optimizing Crop Yield Estimation through Geospatial Technology: A Comparative Analysis of a Semi-Physical Model, Crop Simulation, and Machine Learning Algorithms
Murali Krishna Gumma Ramavenkata Mahesh Nukala, Pranay Panjala, Pavan Kumar Bellam, Snigdha Gajjala, Sunil Kumar Dubey, Vinay Kumar Sehgal, Ismail Mohammed, Kumara Charyulu Deevi
View...

4.

A framework for disaggregating remote-sensing cropland into rainfed and irrigated classes at continental scale
Afua Owusu, Stefanie Kagone, Mansoor Leh, Murali Krishna Gumma Benjamin Ghansah, Paranamana Thilina-Prabhath, Komlavi Akpoti, Kirubel Mekonnen , Primrose Tinonetsana, Ismail Mohammed,
View...

2023 Back to Top
1.

Impacts of irrigation tank restoration on water bodies and croplands in Telangana State of India using Landsat time series data and machine learning algorithms
Murali Krishna Gumma Pranay Panjala, Kumara Charyulu Deevi, Pavan Kumar Bellam, Venkateswarlu Dheeravath & Ismail Mohammed
View...

2.

Assessment of Cropland Changes Due to New Canals in Vientiane Prefecture of Laos using Earth Observation Data
Murali Krishna Gumma, Yamano Takashi , Pranay Panjala , Kumara Charyulu Deevi , Vanthong Inthavong , Pavan Kumar Bellam , Ismail Mohammed
View...

3.

Impacts of irrigation tank restoration on water bodies and croplands in Telangana State of India using Landsat time series data and machine learning algorithms
Gumma, M. K., Pranay P , Deevi K. C. ,Bellam P. K. , Dheeravath V. , Mohammed I
View...

2022 Back to Top
1.

Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and…
Murali Krishna Gumma Prasad S Thenkabail, Pranay Panjala, Pardhasaradhi Teluguntla, Takashi Yamano, Ismail Mohammed
View...

2.

Identifying Suitable Watersheds across Nigeria Using Biophysical Parameters and Machine Learning Algorithms for Agri–Planning.
Pranay Panjala, Murali Krishna Gumma, Hakeem Ayinde Ajeigbe, Murtala Muhammad Badamasi, Kumara Charyulu Deevi and Ramadjita Tabo.
View...

3.

Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects.
Rakesh K. Srivastava1, O. P. Yadav, Sivasakthi Kaliamoorthy, S. K. Gupta, Desalegn D. Serba, Sunita Choudhary, Mahalingam Govindaraj, Jana Kholová, Tharanya Murugesan, C. Tara Satyavathi, Murali Krishna Gumma, Ram B. Singh, Srikanth Bollam, Rajeev Gupta and Rajeev K. Varshney.
View...

4.

Assessing the impacts of watershed interventions using ground data and remote sensing: a case study in Ethiopia.
Murali Krishna Gumma, G. Desta, T. Amede, P. Panjala, A. P. Smith, T. Kassawmar, K. Tummala, G. Zeleke & A. M. Whitbread .
View...

5.

Assimilation of Remote Sensing Data into Crop Growth Model for Yield Estimation: A Case Study from India.
Murali Krishna Gumma, M. D. M. Kadiyala, Pranay Panjala, Shibendu S. Ray, Venkata Radha Akuraju, Sunil Dubey, Andrew P. Smith, Rajesh Das & Anthony M. Whitbread .
View...

6.

Water spreading weirs altering flood, nutrient distribution and crop productivity in upstream–downstream settings in dry lowlands of Afar, Ethiopia.
Mezegebu Getnet, Tilahun Amede, Gebeyaw Tilahun, Gizachew Legesse,Murali Krishna Gumma, Hunegnaw Abebe, Tadesse Gashaw, Christina Ketter and Elisabeth V. Akker.
View...

7.

Remediation of acid soils and soil property amelioration via Acacia decurrens-based agroforestry system.
Tadele Amare, Tilahun Amede, Anteneh Abewa, Asmare Woubet, Getachew Agegnehu, Murali Krishna Gumma,Steffen Schulz .
View...

8.

Assessing potential locations for flood-based farming using satellite imagery: a case study of Afar region, Ethiopia.
Murali Krishna Gumma, Tilahun Amede, Mezegebu Getnet, Bhavani Pinjarla, Pranay Panjala, Gizachew Legesse, Gebeyaw Tilahun, Elisabeth Van den Akker, Wolf Berdel, Christina Keller, Moses Siambi and Anthony M. Whitbread.
View...

9.

Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information.
Murali Krishna Gumma, Kimeera Tummala, Sreenath Dixit, Francesco Collivignarelli, Francesco Holecz, Rao N. Kolli & Anthony M. Whitbread.
View...

2021 Back to Top
1.

Assessment of climate change and vulnerability in Indian state of Telangana for better agricultural planning.
M. D. M. Kadiyala, Sridhar Gummadi, Mohammad A. Irshad, Ramaraj Palanisamy, Murali Krishna Gumma, Anthony M. Whitbread .
View...

2.

Harnessing wild relatives of pearl millet for germplasm enhancement: Challenges and opportunities.
Shivali Sharma, Rajan Sharma, Mahalingam Govindaraj, Rajendra Singh Mahala, C. Tara Satyavathi, Rakesh K. Srivastava, Murali Krishna Gumma, Benjamin Kilian.
View...

3.

Modeling the potential impacts of climate change and adaptation strategies on groundnut production in India.
MDM Kadiyala, S Nedumaran, P Jyosthnaa, Murali Krishna Gumma, Sridhar Gummadi, Srigiri Srinivas Reddy, Richard Robertson, Anthony Whitbread.
View...

4.

Global Cropland-Extent Product at 30-m Resolution (GCEP30) Derived from Landsat Satellite Time-Series Data for the Year 2015 Using Multiple Machine-Learning Algorithms on Google Earth Engine Cloud.
Prasad S. Thenkabail, Pardhasaradhi G. Teluguntla, Jun Xiong, Adam Oliphant, Russell G. Congalton, Mutlu Ozdogan,Murali Krishna Gumma, James C. Tilton, Chandra Giri, Cristina Milesi, Aparna Phalke, Richard Massey, Kamini Yadav, Temuulen Sankey, Ying Zhong, Itiya Aneece, and Daniel Foley.
View...

2020 Back to Top
1.

Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information.
Murali Krishna Gumma, Kimeera Tummala, Sreenath Dixit, Francesco Collivignarelli, Francesco Holecz, Rao N. Kolli, Anthony M. Whitbread.
View...

2.

Assessing potential locations for flood-based farming using satellite imagery: a case study of Afar region, Ethiopia.
Murali Krishna Gumma, Tilahun Amede, Mezegebu Getnet, Bhavani Pinjarla, Pranay Panjala, Gizachew Legesse, Gebeyaw Tilahun, Elisabeth Van den Akker, Wolf Berdel, Christina Keller, Moses Siambi, Anthony M. Whitbread.
View...

3.

Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud.
Murali Krishna Gumma, Prasad S. Thenkabail, Pardhasaradhi G. Teluguntla, Adam Oliphant, Jun Xiong, Chandra Giri, Vineetha Pyla, Sreenath Dixit, Anthony M Whitbread.
Pages 302-322 View...

4.

Stress-resilient maize for climate-vulnerable ecologies in the Asian tropics.
Zaidi P H, Nguyen T, Dang N H, Suriphat T, Salahuddin A, Arshad M, Koirala K B, Rijal T R, Kuchanur P H, Patil A M, Mandal S S, Kumar R, Singh S B, Kumar B, Shahi J P, Patel M B, Murali Krishna Gumma, .....
Australian Journal of Crop Science, 14 (8). pp. 1264-1274. ISSN 1835-2707, https://www.cropj.com/zaidi_14_8_2020_1264_1274.pdf View...

5.

Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation indices.
Gangalakunta P. Obi Reddy, Nirmal Kumar, Nisha Sahu, Rajeev Srivastava, Surendra Kumar Singh, Lekkala Gopala Krishnama Naidu, Gajjala Ravindra Chary, Chandrashekhar M. Biradar,Murali Krishna Gumma, Bodireddy Sahadeva Reddy & Javaji Narendra Kumar .
View...

6.

Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and MODIS vegetation indices.
Gudina Legese Feyisa, Leo Kris Palao, Andy Nelson,Murali Krishna Gumma, Ambica Paliwal, Khin Thawda Win, Khin Htar Nge, David E.Johnson .
Computers and Electronics in Agriculture View...

7.

Dynamics and drivers of land use and land cover changes in Bangladesh.
Xiaoming Xu, Suravi Shrestha, Hammad Gilani,Murali Krishna Gumma, Baktiar N Siddiqui, Atul K Jain .
Regional Environmental Change View...

2019 Back to Top
1.

Monitoring Changes in the Cultivation of Pigeonpea and Groundnut in Malawi Using Time Series Satellite Imagery for Sustainable Food Systems.
Murali Krishna Gumma, Takuji W. Tsusaka, Irshad Mohammed, Geoffrey Chavula, N. V. P. R. Ganga Rao, Patrick Okori, Christopher O Ojiewo, Rajeev Varshney, Moses Siambi, Anthony M Whitbread .
Remote Sens. 2019, 11(12), 1475 View...

2.

Mapping drought-induced changes in rice area in India.
Murali Krishna Gumma, Andrew Nelson, Takashi Yamano.
Pages 8146-8173 View...

3.

A watershed approach to managing rainfed agriculture in the semiarid region of southern Mali: integrated research on water and land use.
Birhanu Zemadim Birhanu, Kalifa Traoré, Murali Krishna Gumma, Félix Badolo, Ramadjita Tabo, Anthony Michael Whitbread .
Environment, Development and Sustainability volume 21, pages2459–2485(2019) View...

3.

Characterization of GLDC Mega-environments.
Murali Krishna Gumma
View...

4.

Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud.
Adam J.Oliphant, Prasad S.Thenkabail, Pardhasaradhi Teluguntla, Jun Xiong, Murali Krishna Gumma, Russell G.Congalton, Kamini Yadav .
Volume 81, September 2019, Pages 110-124 View...

5.

Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud.
Adam J.Oliphant, Prasad S.Thenkabail, Pardhasaradhi Teluguntla, Jun Xiong, Murali Krishna Gumma, Russell G.Congalton, Kamini Yadav .
Volume 81, September 2019, Pages 110-124 View...

6.

Multi-criteria analysis and ex-ante assessment to prioritize and scale up climate smart agriculture in semi–arid tropics, India.
Shalander K, Dakshinamurthy K, Elias Khan P, Murali Krishna Gumma, Khatri Chhetri A , Whitbread A M.
View...

7.

Tungabhadra Left Bank Canal (TLBC) irrigation modernization: Detailed command area mapping using remote sensing, (November 2018 - March 2019).
Murali Krishna Gumma, Tummala K, Jameeruddin M, Pinjarla B, Roy P S, Whitbread A M.
View...

8.

High resolution Sentinel-2 crop type mapping 2018-2019 A case study in Ahmednagar district .
Pinjarla B, Murali Krishna Gumma, Jameeruddin , Roy P S.
View...

9.

Chapter 9 - Indo-Ganges River Basin Land Use/Land Cover (LULC) and Irrigated Area Mapping.
Murali Krishna Gumma, Prasad S.Thenkabail , Pardhasaradhi Teluguntla, Anthony M.Whitbread.
View...

2018 Back to Top
1.

Mapping cropland fallow areas in myanmar to scale up sustainable intensification of pulse crops in the farming system
Murali Krishna Gumma, Prasad S Thenkabail, Kumara Charyulu Deevi, Irshad A Mohammed, Pardhasaradhi Teluguntla, Adam Oliphant, Jun Xiong, Tin Aye & Anthony M Whitbread.
GIScience & Remote Sensing View...

2.

A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
Pardhasaradhi Teluguntla, Prasad SThenkabail, Adam Oliphant, JunXiong, Murali Krishna Gumma Russell G.Congalton, KaminiYadav, Alfredo Huete.
ISPRS Journal of Photogrammetry and Remote Sensing Volume 144, October 2018, Pages 325-340 View...

3.

Characterization of the main chickpea cropping systems in India using a yield gap analysis approach
Amir Hajjarpoor, VincentVadez, Afshin Soltani, Pooran Gaur, Anthony Whitbread, Dharani Suresh Babu, Murali Krishna Gumma, Madina Diancoumba, Jana Kholová.
Field Crops Research Volume 223, 15 June 2018, Pages 93-104 View...

4.

Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002
Matteo Zampieri, Gema Carmona Garcia, Frank Dentener, Murali Krishna Gumma, Peter Salamon, Lorenzo Seguini and Andrea Toreti.
Remote Sens. 2018, 10(2), 244 View...

4.

Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002
Matteo Zampieri, Gema Carmona Garcia, Frank Dentener, Murali Krishna Gumma, Peter Salamon, Lorenzo Seguini and Andrea Toreti.
Remote Sens. 2018, 10(2), 244 View...

5.

A review of the available land cover and cropland maps for south Asia.
Prashant Patil, Murali Krishna Gumma.
Agriculture 2018 Vol.8 No.7 pp.111 ref.69 View...

6.

Monitoring of Spatiotemporal Dynamics of Rabi Rice Fallows in South Asia Using Remote Sensing.
Murali Krishna Gumma, Prasad S. Thenkabail,Pardhasaradhi Teluguntla , Anthony M. Whitbread.
Part of the Geotechnologies and the Environment book series (GEOTECH, volume 21)View...

7.

Advancing knowledge on the costs and benefits of sustainable soil fertility management in Maharashtra and Madhya Pradesh /India.
Falk T, Kadiyala M D M, Murali Krishna Gumma, Kumar S, Whitbread A M, Limberger S, Bartels L.
View...

8.

Monitoring rice fallows in India using MODIS time series data.
Murali Krishna Gumma, Thenkabail P S, Whitbread A M.
View...

9.

Towards climate-smart agricultural policies and investments in Telangana .
Kumar S, Kadiyala M D M,Murali Krishna Gumma, Elias Khan P, Khatri Chhetri A, Aggarwal P, Murthy C S R, Chakravarthy K, Whitbread A M.
View...

2017 Back to Top
1.

Geographical distribution of traits and diversity in the world collection of pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] landraces conserved at the ICRISAT genebank
HD Upadhyaya, KN Reddy, MI Ahmed, V Kumar, MK Gumma, ...
Genetic Resources and Crop Evolution 64 (6), 1365-1381View...

2.

Automated cropland mapping of continental Africa using Google Earth Engine cloud computing
J Xiong, PS Thenkabail, MK Gumma,P Teluguntla, J Poehnelt, ...
ISPRS Journal of Photogrammetry and Remote Sensing 126, 225-244 View...

3.

Ex Ante Impact Assessment of a Drought Tolerant Rice Variety in the Presence of Climate Change
MVR Murty, T Li,MK Gumma, KA Mottaleb, HG Valera, S Mohanty, ...
View...

4.

Hyperspectral remote sensing of vegetation and agricultural crops
P Thenkabail.
the American Society for Photogrammetry and Remote Sensing (ASPRS)View...

5.

Geographical distribution, diversity and gap analysis of East African sorghum collection conserved at the ICRISAT genebank
HD Upadhyaya, K Narsimha Reddy, M Vetriventhan, MK Gumma, ...
Australian Journal of Crop Science, 11 (4), 424-437View...

6.

Measuring Sustainable Intensification of Agricultural Productivity in Semi-Arid Tropics (SAT) of India–Case studies Synthesis Report
D Kumara Charyulu, D Moses Shyam, K Dakshina Murthy, MK Gumma, ...
View...

7.

Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data
P Teluguntla, PS Thenkabail, J Xiong, MK Gumma, RG Congalton, ...
Australian Journal of Crop Science, 11 (4), 424-437View...

2016 Back to Top
1.

Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data
MK Gumma, PS Thenkabail, P Teluguntla, MN Rao, MI Ahmed, ...
International Journal of Digital Earth 9 (10), 981-1003 View...

2.

Diffusion of Submergence-tolerant Rice in Eastern India: Awareness, Adoption, and an Ex-ante Analysis
T Yamano, A Panda, I Gupta, PC Veettil, MK Gumma View...

3.

Status, genetic diversity and gaps in sorghum germplasm from South Asia conserved at ICRISAT genebank
HD Upadhyaya, KN Reddy, M Vetriventhan, MK Gumma, MI Ahmed, ...
Plant Genetic Resources, 1-12 View...

4.

Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning
MK Gumma, BZ Birhanu, IA Mohammed, R Tabo, AM Whitbread
Water 8 (6), 260 View...

5.

Agronomic management options for sustaining chickpea yield under climate change scenario
MDM Kadiyala, DK Charyulu, S Nedumaran, DM Shyam, MK Gumma, ...
Journal of Agrometeorology 18 (1), 41  View...

6.

Priority regions for research on dryland cereals and legumes
G Hyman, E Barona, C Biradar, E Guevara, J Dixon, S Beebe, ...
F1000 Research 5 (885), 01-18 View...

7.

Land use and agricultural change dynamics in SAT watersheds of southern India
IM Ahmed, MK Gumma, S Kumar, P Craufurd, IM Rafi, A Haileslassie
CURRENT SCIENCE 110 (9), 1704 View...

8.

Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data
MK Gumma, PS Thenkabail, P Teluguntla, MN Rao, IA Mohammed, ...
International Journal of Digital Earth, 1-23 View...

9.

Satellite imagery and household survey for tracking chickpea adoption in Andhra Pradesh, India
MK Gumma, K Charyulu Deevi, IA Mohammed, RK Varshney, P Gaur, ... International Journal of Remote Sensing 37 (8), 1955-1972 View...

10.

Watershed management, efforts beyond farm level in southern Mali
B Zemadim, MK Gumma, C Guedessou, K Traore, B Sogoba, R Tabo ICRISAT View...

11.

Global Food Security Support Analysis Data at Nominal 1 km (GFSAD1km) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future Possibilities
PS Thenkabail, J Xiong, MK Gumma, C Giri View...

12.

Hyperspectral remote sensing for terrestrial applications
PS Thenkabail, PS Thenkabail, P Teluguntla, MK Gumma, V Dheeravath
Land Resources Monitoring, Modeling, and Mapping with Remote Sensing, 201-233 View...

2015 Back to Top
1. Mottaleb, K.A, Gumma, M.K, Mishra A,K, Mohanty, S, (2015) Quantifying Production Losses
due to Drought and Submergence of Rainfed Rice at the households level Using Remotely
Sensed MODIS data. Agriculture Systems. View...
2.

Gumma, M.K, Kajisa, K, Irshad, A.M, Anthony, W, Nelson, A, Arnel, R and Palanisamy, K. (2015). Temporal changes in land use by irrigation source in TamilNadu and management implications. Environmental monitoring and Assessment. 187(1):4155. View...

3. Gumma, M.K, Mohanty, S, Andrew, N, Rala, A, Irshad, A.M, Das, S.R. (2015) Remote sensing based change analysis of rice environments in Odisha, India. Journal of Environmental Management. 148(2015):31-41. View...
4.

Mapping Direct Seeded Rice in Raichur District of Karnataka, India
MK Gumma, D Uppala, IA Mohammed, AM Whitbread, IR Mohammed
Photogrammetric Engineering & Remote Sensing 81 (11), 873-880 View...

5.

Inland Valley Wetland Cultivation and Preservation for Africa’s Green and Blue Revolution Using Multisensor Remote Sensing
MK Gumma, PS Thenkabail Remote Sensing of Water Resources, Disasters, and Urban Studies, 227 View...

6.

Land resources monitoring, modeling, and mapping with remote sensing
CRC Press   View...

7.

Global Food Security Support Analysis Data at Nominal 1 km (GFSAD1km) Derived From Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future Possibilities;Remote Sensing Handbook
P Teluguntla, PS Thenkabail, J Xiong, MK Gumma, C Giri, C Milesi, ...  View...

8.

Inland Valley Wetland Cultivation and Preservation for Africa’s Green and Blue Revolution Using Multisensor Remote Sensing; Remote Sensing Handbook
MK Gumma, PS Thenkabail, IA Mohammed, P Teluguntla, V Dheeravath Taylor and Francis Group  View...

9.

Handbook of Remote Sensing, Global Food Security Support Analysis Data at Nominal 1 km (GFSAD1km) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future Possibilities
P Teluguntla, PS Thenkabail, J Xiong, MK Gumma, C Giri  View...

10.

Lowland rice extent of Asia A map of lowland rice extent in the major rice growing countries of Asia
A Nelson, MK Gumma
http://irri.org/our-work/research/policy-and-markets/mapping/remote-sensing ...  View...

11.

Remote sensing of water resources, disasters, and urban area: monitoring, modeling, and mapping advances over last 50 years and a vision for the future
PS Thenkabail  View...

12.

Global Cropland Area Database (GCAD) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future Possibilities
PG Teluguntla, PS Thenkabail, J Xiong, MK Gumma, C Giri, C Milesi, ... Taylor & Francis: Boca Raton, FL, USA  View...

13.

Adoption, Yield, and Ex Ante Impact Analysis of Swarna-Sub 1 in Eastern India
T Yamano, M Malabayabas, MK Gumma View...

2014 Back to Top
1. Gray, J, Griedl, M, Frolking, S, Nelson, A, Gumma, M,K (2014). Multitemporal Analysis of Remote Sensing Data. IEEE Applied Earth Observations and Remote Sensing 7(8), 3373-3379. View...
2. Thenkabail, P.S, Gumma, M.K, Teluguntla PS, Irshad AM (2014) Hyperspectral Remote Sensing (Imaging Spectroscopy) of Vegetation and Agricultural crops. Photogrammetric Engineering and Remote Sensing. 80(8), 697-709.View...
3. Thenkabail, P.S, Gumma, M.K, Teluguntla PS, Irshad AM (2014) Hyperspectral Hyperion Images and Spectral Libraries of Agricultural Crops. Cover Page. Photogrammetric Engineering and Remote Sensing. 80(8), 697-709. View...
4. Gumma, M.K, Thenkabail, P.S, Andrew, N, Maunahan, A, Islam, S. (2014), Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500 m data for the year 2010. ISPRS Journal of Photogrammetry and Remote Sensing. 91(5), 98-113. View...
5. Gumma, M.K, Pyla, KR., Thenkabail, P., Reddi, V., Naresh, G., Mohammed, I., Rafi, I., 2014. Crop Dominance Mapping with IRS-P6 and MODIS 250-m Time Series Data. Agriculture 4 (2), 113-131. View...
2013 Back to Top
1. Thenkabail, P.S, Mariotto I, Gumma, M.K, David R. Landis, Fred K. Huemmrich, and Elizabeth M.M (2013) Hyperspectral- Vegetation Indices (HVIs) and Narrowbands (HNBs) To Understand, Model, and Map Major World Agricultural Crops in Support of Global Food Security and HyspIRI Mission. IEEE Applied Earth Observations and Remote Sensing.6 (2) 427-438. View...
2. Gumma, M.K, and Pavelic, P. (2013). Identifying groundwater potential zones across Ghana using Remote sensing techniques. Environmental monitoring and Assessment. 185 (4), 3561-3579. View...
3. T Yamano, M Malabayabas, Gumma, M.K. 2013. Adoption, Yield, and Ex Ante Impact Analysis of Swarna-Sub 1 in Eastern India. In STRASA Economic Briefs, No. 2 (March 2013).
View...
2012 Back to Top
1. Thenkabail, P.S., Knox, J.W., Ozdogan. M., Gumma, M.K., Congalton, R., Wu. Z., You. S.,
Milesi. C., Giri. C., Nagler. P., Finkral. A., Marshall. M., and Mariottio. I., (2012) Assessing future
risks to agricultural productivity, water resources and food security: how can remote sensing help?
Photogrammetric Engineering and Remote Sensing
. 78(8), 773-782. View...
2. Gumma, M.K, Andrew, N., Aileen, M., and Islam, S. 2012. Mapping Complex rice-cropping pattern in Bangladesh. ESRI Map Book. 27 (1), 64. View...
3. Gumma, M.K, Daniel, V.R., Andrew, N., Thenkabail, P.S., Venkat, A. R. and Priyanie, A., (2012). Expansion of urban- and wastewater irrigated areas in Hyderabad, India. Irrigation and Drainage Systems. 25, 135-149. doi: 10.1007/s10795-011-9117-y. View...
4. Pavelic, P, Uday, P, Sreedhar A.N, Kiran, J, and Gumma, M.K,. (2012)Role of Groundwater in Buffering Irrigation Production against Climate Variability in South-West India. Agriculture Water management. 103, 78-87. View...
5. Gumma, M.K, Andrew, N., Aileen, M., Thenkabail, P.S., and Islam, S. 2012. Rice cropping patterns in Bangladesh.  Rice Today, 11(1)24-25. View...
6. Mohanty, S, Das, S.R, Gumma M.K. 2012. Odisha: The future granary of India.  Rice Today, 11(1)44-45. View...
2011 Back to Top
1. Gumma, M.K, Andrew, N., Thenkabail, P.S. and A.N.Singh.. (2011). Mapping rice areas in South Asia using MODIS multi temporal data. Journal of Applied Remote Sensing, Vol 5, 053547 (Sep 01, 2011); doi:10.1117/1.361983.View...
2. Gumma, M.K, Gauchan, D, Andrew, N., Pandey, S. and Rala, A. (2011).Temporal changes in rice-growing area and their impact on livelihood over a decade: a case study of Nepal.Agriculture, Ecosystems & Environment.142 (3-4), 382-392. View...
3. Gumma, M.K., Thenkabail, P.S., Muralikrishna, I.V., Velpuri, M.N., Gangadhararao, P.T., Dheeravath, V., Biradar, C.M., Acharya Nalan, S., Gaur, A., 2011. Changes in agricultural cropland areas between a water-surplus year and a water-deficit year impacting food security, determined using MODIS 250 m time-series data and spectral matching techniques, in the Krishna River basin (India). International Journal of Remote Sensing 32(12), 3495-3520.View...
4. Gumma, M.K., Thenkabail, P.S., Fujii, H., Nelson, A., Dheeravath, V. Rala, A., and Busia. D. 2011. Mapping Irrigated Areas of Ghana Using Fusion of 30 m and 250 m Resolution Remote-Sensing Data.  Journal Remote Sensing. 2011, 3(4), 816-835. View...
5. Gumma M.K., Thenkabail P.S., Nelson A. Mapping Irrigated Areas Using MODIS 250 Meter Time-Series Data: A Study on Krishna River Basin (India). Journal Water. 2011; 3(1):113-131. View...
2010 Back to Top
1. Gumma, M.K, Andrew, N., Thenkabail, P.S., Singh, A.N., Garcia, C., Aileen, M., and Lorena, V. 2010. Mapping rice areas in South Asia. Rice Today, 9(3)44-47. View...
2. Gumma, M.K, Thenkabail, P.S., and Barry, B. 2010. Delineating shallow groundwater irrigated areas in the Atankwidi watershed (northern Ghana, Burkina Faso) using Quickbird 0.61-2.44 meter data. African Journal of Environmental Science and Technology, 4(7) 455-664. View...
3. Fujii, H., Gumma, M.K., Thenkabail, P.S. and Regassa, N., 2010. Spatial Model for Selecting the Most Suitable Areas of rice Cultivation in the Inland Valley Wetlands of Ghana using Remote Sensing and GIS. Japanese society of Irrigation, drainage and rural Engineering (JSIDRE). Vol.78 No.4 pp47-55. View...
4. Thenkabail, P.S., Munir A.H., Dheeravath, V. and Gumma, M.K., 2010. A holistic view of global croplands and their water use for ensuring global food security in the twenty-first century through advanced remote sensing and non-remote sensing approaches. Remote Sensing 2010. 2(1), 211-261. View...
5. Venot, J.P., Jella, K., Luna, B., Biju, G., Trent, B., Gangadhararao, T.P., Gumma, M.K., Sreedhar, A.N., 2010. Changing water supply Farmers’ adjustments and regional changes in land use in the Nagarjuna Sagar irrigation project, South India” Journal of Irrigation and Drainage Engineering, 139(9):595-609. View...
2009 Back to Top
1. Gumma, M.K., Thenkabail, P.S., Fujii, H., and Regassa, N., 2009. Spatial Model for Selecting the Most Suitable Areas of rice Cultivation in the Inland Valley Wetlands of Ghana using Remote Sensing and GIS. Journal of Applied Remote Sensing. Vol. 3, 033537 (2009); DOI:10.1117/1.3182847. View...
2. Dheeravath, V., Thenkabail, P.S., Chandrakantha, G., Noojipady, P., Reddy, G.P.O., Biradar, C.M., Gumma, M.K., and Velpuri, M. 2009. Irrigated areas of India using MODIS 500 m time series for the years 2001-2003. ISPRS Journal of Photogrammetry and Remote Sensing. 65(2009).42-59.View...
3. Velpuri, N.M., Thenkabail, P.S., Gumma, M.K., Biradar, C.B., Noojipady, P., Dheeravath, V., Yuanjie, L., 2009. Influence of Resolution in Irrigated Area Mapping and Area Estimations. Photogrammetric Engineering & Remote Sensing. 75, 1383-1395. View...
4. Thenkabail, P.S., Biradar C.M., Noojipady, P., Dheeravath, V., Li, Y.J., Velpuri, M., Gumma, M., Reddy, G.P.O., Turral, H., Cai, X. L., Vithanage, J., Schull, M., and Dutta, R. 2009. Global Irrigated Area Map (GIAM) for the End of the Last Millennium Derived from Remote Sensing. International Journal of Remote Sensing. 30(14): 3679-3733. July, 20, 2009. View...
5. Thenkabail, P. S.; Dheeravath, V.; Biradar, C. M.; Gangalakunta, O. P.; Noojipady, P.; Gurappa, C.; Velpuri, M.; Gumma, M.K; Li, Y. Irrigated Area Maps and Statistics of India Using Remote Sensing and National Statistics. Remote Sens. 2009, 1(2), 50-67. View...
6. Biradar, C.M., Thenkabail, P.S., Noojipady, P., Yuanjie, L., Dheeravath, V., Turral, H., Velpuri, M., Gumma, M.K., Reddy, O.G.P., Xueliang, L. C., Schull, M.A., Alankara, R.D., Gunasinghe, S., Mohideen, S., Xiao, X. 2009. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. International Journal of Applied Earth Observation and Geoinformation.  11(2009). 114-129. View...
7. Cai. X.,Thenkabail. P.S., Biradar, C.M., Alexander, P., Gumma, M.K.,  Dheeravath, V., Yafit, C., Naftali, G., Eyan, B., Victor, A., Jagath, V. and Anputhas, M., 2009. Water productivity mapping using remote sensing data of various resolutions to support “more crop per drop”. Journal of Applied Remote sensing. Vol. 3, 033557 (2009). View...
2008 Back to Top
1. Gumma, M.K., Thenkabail, Prasad S., Gautam, N. C., Gangadhara Rao, T. P., Velpuri, N.M. 2008. Irrigated area mapping using AVHRR, MODIS and LANDSAT ETM+ data for the Krishna River Basin, India. Technology Spectrum, 2(1): 1-11. View...
2. Gaur, A., T.W. Biggs, Gumma. M.K., GangadharaRao. P, and H. Turral., 2008. Water scarcity effects on equitable water distribution and land use in Major Irrigation Project – A Case study in India. Journal of irrigation and Drainage Engineering, 134 (1): 26-35. View...
3. T.P.G.Rao, I.V.Muralikishna, Gumma. M.K, and Thenkabail,P.S. 2008. Mapping Irrigated area using Spectral Matching Techniques and Sub Pixel Decomposition Techniques in the Krishna River Basin, India. Technologyf Spectrum, 2 (3):32-45. View...
4. Platonov.,A Thenkabail, P.S., Biradar, C.M., Cai, X., Gumma, M.K., Dheeravath, V.,  Y. Cohen, V. Alchanatis, N. Goldshlager, E. Ben-Dor, J. Vithanage, H. Manthrithilake, Sh. Kendjabaev, and S. Isaev. 2008. Water Productivity Mapping (WPM) using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia. Sensors Journal, 8(12), 8156-8180. View...
2007 Back to Top
1. Thenkabail, P.S., GangadharaRao, P., Biggs, T., Gumma, M.K., and Turral, H., 2007. Spectral Matching Techniques to Determine Historical Land use/Land cover (LULC) and Irrigated Areas using Time-series AVHRR Pathfinder Datasets in the Krishna River Basin, India. Photogrammetric Engineering and Remote Sensing. 73(9): 1029-1040. Wins 2008 John I. Davidson ASPRS President’s Award from the American Society of Photogrammetry and Remote Sensing (ASPRS). View...
2. Thenkabail, Prasad S., Biradar, C M., Noojipady, P., Xueliang, Cai, Dheeravath, V. Gumma, M.K., Li, Y. J., Velpuri, M., Pandey, Suraj. 2007. Sub-pixel area calculation methods for estimating irrigated areas. Sensors, 7: 2519-2538. View...
3. Biggs, T., Thenkabail, P.S., Gumma, M.K, Scott, C.A, GangadharaRao, P., and Turral, H., 2006. Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. International Journal of Remote Sensing. 27(19):4245-4266. (One of the paper in best five papers in IWMI 2006). View...